Effects of mass transfer between Martian satellites on surface geology
نویسندگان
چکیده
Impacts on planetary bodies can lead to both prompt secondary craters and projectiles that reimpact the target body or nearby companions after an extended period, producing so-called ‘‘sesquinary” craters. Here we examine sesquinary cratering on the moons of Mars. We model the impact that formed Voltaire, the largest crater on the surface of Deimos, and explore the orbital evolution of resulting high-velocity ejecta across 500 years using four-body physics and particle tracking. The bulk of mass transfer to Phobos occurs in the first 10 years after impact, while reaccretion of ejecta to Deimos is predicted to continue out to a 10 year timescale (cf. Soter, S. [1971]. Studies of the Terrestrial Planets. Cornell University). Relative orbital geometry between Phobos and Deimos plays a significant role; depending on the relative true longitude, mass transfer between the moons can change by a factor of five. Of the ejecta with a velocity range capable of reaching Phobos, 25–42% by mass reaccretes to Deimos and 12–21% impacts Phobos. Ejecta mass transferred to Mars is <10%. We find that the characteristic impact velocity of sesquinaries on Deimos is an order of magnitude smaller than those of background (heliocentric) hypervelocity impactors and will likely result in different crater morphologies. The time-averaged flux of Deimos material to Phobos can be as high as 11% of the background (heliocentric) direct-to-Phobos impactor flux. This relatively minor contribution suggests that spectrally red terrain on Phobos (Murchie, S., Erard, S. [1996]. Icarus 123, 63–86) is not caused by Deimos material. However the high-velocity ejecta mass reaccreted to Deimos from a Voltaire-sized impact is comparable to the expected background mass accumulated on Deimos between Voltaire-size events. Considering that the high-velocity ejecta contains only 0.5% of the total mass sent into orbit, sesquinary ejecta from a Voltaire-sized impact could feasibly resurface large parts of the Moon, erasing the previous geological record. Dating the surface of Deimos may be more challenging than previously
منابع مشابه
Martian Residents: Mass Media and Ramsar High Background Radiation Areas
Considering current controversies regarding the health effects of low doses of ionizing radiation, study of the high background radiation areas such as Ramsar, Iran can help scientists better evaluate the validity of linear no-threshold (LNT) hypothesis. Ramsar is a coastal city in northern Iran with some areas known to have the highest levels of natural background radiation in the world. The m...
متن کاملEffects of Some Thermo-Physical Parameters on Free Convective Heat and Mass Transfer over Vertical Stretching Surface at Absolute Zero
Effects of some thermo-physical parameters on free convective heat and mass transfer over a vertical stretching surface at lowest level of heat energy in the presence of suction is investigated. The viscosity of the fluid is assumed to vary as a linear function of temperature and thermal conductivity is assumed constant. A similarity transformation is applied to reduce the governing equations i...
متن کاملMartian Meso-/micro-scale Winds & Surface Energy Budget
Regional, diurnal and seasonal variations of surface temperature are particularly large on Mars. This is mostly due to the Martian surface remaining close to radiative equilibrium. Contrary to most terrestrial locations, contributions of sensible heat flux (i.e. conduction/convection exchanges between atmosphere and surface) to the surface energy budget [hereinafter SEB] are negligible on Mars ...
متن کاملThe Effects of a Surfactant Concentration on the Mass Transfer in a Mixer-Settler Extractor
The effects and influences of various parameters upon the efficiency and the overall volumetric mass transfer coefficients are important subjects to be studied in most liquid-liquid extraction processes. One of these important parameters is surface active agent (surfactant). In this paper, in order to study the effect of sodium dodecyl sulfate (SDS) concentration on the efficiency and the a...
متن کاملMartian sub-surface ionising radiation: biosignatures and geology
The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radi...
متن کامل